The online electrical conductivity simulations on this page will help you understand how conductivity acts at the atomic level and why some materials are conductive and others are not.
Electrical conductivity at the atomic level refers to the ability of the atoms in a material to transfer electrical charges. It is determined by the atomic structure of the materials and the ability of their electrons to move Materials can be classified as conductors, insulators or semiconductors depending on their ability to transfer electrical charges.
Metals are good conductors because of their atomic structure. Metal atoms have free electrons in their outer shell that can easily move between atoms. When an electric field is applied, these free electrons move in the direction of the electric field and carry electric charge. Therefore, metals are good conductors of electricity.
Insulators, on the other hand, have a different atomic structure. The atoms in insulators do not have free electrons in their outer shell. Instead, the outer shell electrons are tightly bound to the atoms, making it difficult for them to move. Therefore, insulators cannot carry electric charges and are poor conductors.
Semiconductors have an atomic structure intermediate between conductors and insulators. They have some free electrons in their outer shell, but not as many as metals. In addition, electrons can easily jump into the conduction band and become free electrons under certain conditions, such as the application of an electric field or energy absorption. Therefore, semiconductors have an intermediate electrical conductivity.
Explore the exciting STEM world with our free, online simulations and accompanying companion courses! With them you'll be able to experience and learn hands-on. Take this opportunity to immerse yourself in virtual experiences while advancing your education - awaken your scientific curiosity and discover all that the STEM world has to offer!
- Conductivity
- Band
Conductivity
Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics do not, and why some materials conduct only when a flashlight shines on them.
File
This Java simulation cannot run on this device because it has a screen that is too narrow. We recommend that, for a better user experience, you run it on a device with a wider screen.
Although this Java simulation can be run on your device, we recommend that for the better user experience, you run it on a device with a wider screen.
Energy band of metals
Metals become electrically conductive because electrons can move freely through them across energy bands. The electrons of many nonmetals are difficult to move because the electrons fill the energy band.